ASCI Red Storm and and Supercomputer Scalability Dr. Erik P. DeBenedictis Sandia National Laboratories

Symposium on Supercomputations Sarov, Russia

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Red Storm Overview
- Scalability
- Light Weight Kernel

Project Overview

- Red Storm is a nominally 40 TFlops supercomputer that is part of the Advanced Simulation and Computation (ASCI) program
- Red Storm was specified by and is being procured by Sandia National Laboratories
- Red Storm is being manufactured by Cray, Inc.
- Initial delivery to Sandia is scheduled for May, 2004

Red Storm is a Massively Parallel Processor

Service Compute Partition Parallel I/O

Usage Model

27×16×24 3D Mesh/Torus + I/O

Space Sharing of Jobs

- Jobs occupy disjoint regions simultaneously
- Example red, green, and blue jobs:

Red Storm Hardware Overview

Node Architecture

ASIC = Application Specific Integrated Circuit, or a "custom chip"

Scalability

- Communications is the key concern
 - Amdahl's Law limits the scalability of parallel computation...
 - but not due to serial work in the application
- Why?

Amdahl's Law

$$S_{Amdahl}(N) = [1 + f_s]/[1/N + f_s]$$

where S is the speedup on N processors and f_s is the serial (non-parallelizable) fraction of the work to be done.

Amdahl says that in the limit of an infinite number of processors, S cannot exceed [1+ f_s]/ f_s . So, for example if f_s = 0.01, S cannot be greater than 101 no matter how many processors are used.

Amdahl's Law Picture

1 parallelizable

f_s serial

Time =
$$1 + f_s$$

1 unit of computation executed with N-way parallelism

Time = $1/N + f_s$

Amdahl's Law

Example:

How big can f_s be if we want to achieve a speedup pf 8,000 on 10,000 processors (80% parallel efficiency)?

Answer:

f_s must be less than 0.000025!

Amdahl's Law

Contrary to Amdahl & most folks' early expectations, well designed codes on balanced systems can routinely do this well or better!

However in applying Amdahl's Law, we neglected the overhead due to communications.

A Realistic View of Amdahl's Law

The actual scaled speedup is more like

$$S(N) \sim S_{Amdahl}(N)/[1 + f_{comm} \times R_{p/c}],$$

where f_{comm} is the fraction of work devoted to communications and R_{p/c} is the ratio of processor speed to communications speed.

Realistic Picture of Amdahl's Law

- Problem is a physical simulation in two dimensions
- Ratio of boundary (■) to all points (□+■) is f_{comm}
- Boundary runs at slower due to communications, say ratio of R_{p/c}
- Communications will slow execution by factor of

$$\frac{1}{1 + f_{comm} \times R_{p/c}}$$

Implications of Realistic Amdahl's Law

- Let's consider three cases on two computers:
 - The two computers are identical except that one has
 - $R_{p/c} = 1$ Byte/FLOP (fast communications)
 - $R_{p/c} = 0.05$ Byte/FLOP (not so fast communications)
 - The three cases are
 - $f_{comm} = 0.01$,
 - $f_{comm} = 0.05$, and
 - $f_{comm} = 0.10$

Real Amdahl's Law Efficiency

Efficiency	F _{comm} = .01	F _{comm} = .05	F _{comm} = .1
	99% comp.	95% comp.	90% comp.
	dominated	dominated	dominated
R _{p/c} = 1 Time to send a number ≈ time for an op on it	99%	95%	90%
	Efficient	Efficient	Efficient
$R_{p/c} = 0.05$ Time to send a number \approx time for 20 ops on it	83%	50%	33%
	Efficient	Efficient	Efficient

Sandia Experience with R_{p/c}

Molecular Dynamics Benchmark Scaled-Size Performance, N = 32000 atoms/proc

Sandia Experience with R_{p/c}

Importance of Balanced Communications

- A "well-balanced" architecture is nearly insensitive to communications overhead
- By contrast a system with weak communications can lose over half its power for applications in which communications is important
- Red Storm has been designed with R_{p/c} ≈ 1

Comparisons of Communications Balance

Machine	Node Speed Rating(MFlops)	Link BW	Ratio
	ixaurig(wiriops)	(Mbytes/s)	(Bytes/flop)
ASCI RED	400	800(533)	2(1.33)
T3E	1200	1200	1
ASCI RED**	666	800(533)	(1.2)0.67
Cplant	1000	140	0.14
Blue Mtn*	500	800	1.6
BlueMtn**	64000	1200 (9600*)	0.02 (0.16*)
Blue Pacific	2650	300 (132)	0.11 (0.05)
White	24000	2000	0.083
Q*	2500	650	0.2
Q**	10000	400	0.04

Light Weight Kernel

- Sandia has had very good experiences with LWK
 - Sandia-University of New Mexico Operating System (SUNMOS)
 - Cougar
 - Puma
 - Now Catamount (tell story about name)
- Why?
 - Timing stability
 - Maturity

LWK & Musical Rehearsal

N musicians Rehearsing 2 Minute Pages of Music

Sandia Nationa Laborate

Musical Rehearsal with Breaks

2 Minute Pieces with Asynchronous Breaks

0 min 2 min 4 min 6 min

8 min

Breaks in MPP Systems Software

- Unix, Linux, any OS
 - Kernel memory allocation
 - TCP/IP backoff calculations
 - Routing tables
 - Clock synchronization
 - Scheduler
 - Etc., full list unknown, but has been extremely problematic with DOE labs

- Light Weight Kernel
 - None

Run Time Impact of Unix Systems Services

- Say breaks take 50 μS and occur once per second
 - On one CPU, wasted time is 50 μs every second
 - Negligible .005% impact
 - On 100 CPUs, wasted time is 5 ms every second
 - Negligible .5% impact
 - On 10,000 CPUs, wasted time is 500 ms
 - Significant 50% impact
- Red Storm will have 10,000 CPUs, hence LWK approach important

Conclusions

- Red Storm is under construction as a 40 TFLOPS supercomputer
 - Delivery in about one year
- Built on engineering principles of ASCI Red
 - Expected to perform 7x as efficiently
- Performance analysis indicates that the architecture can be scaled considerably beyond Red Storm

